Skip to main content

Overview

A Content Performance Analyzer powered by Pylar analyzes blog posts, content engagement metrics, content ROI, and identifies top-performing content to inform content strategy.

What the Agent Needs to Accomplish

The agent must:
  • Analyze blog post performance
  • Track content engagement metrics
  • Calculate content ROI
  • Identify top-performing content
  • Recommend content topics
  • Track content trends over time

How Pylar Helps

Pylar enables the agent by:
  • Unified Content View: Combining blog data, analytics, and conversion data
  • Real-time Analysis: Querying current content performance
  • ROI Calculation: Automated content ROI calculations
  • Trend Analysis: Identifying content performance trends
  • Recommendation Engine: Data-driven content recommendations

Without Pylar vs With Pylar

Without Pylar

Challenges:
  • ❌ Multiple systems (CMS, analytics, CRM)
  • ❌ Manual content analysis
  • ❌ Difficult to correlate content with conversions
  • ❌ Time-consuming ROI calculations
Implementation Complexity: ~4-5 weeks

With Pylar

Benefits:
  • ✅ Single endpoint for all content data
  • ✅ Automated performance analysis
  • ✅ Real-time ROI tracking
  • ✅ Easy content optimization
Implementation Complexity: ~5-6 hours

Step-by-Step Implementation

Step 1: Connect Data Sources

  1. Connect CMS (Blog posts, content metadata)
  2. Connect Analytics (Page views, engagement, time on page)
  3. Connect CRM (Content-to-lead conversions)

Step 2: Create Content Views

Content Performance View:
CREATE VIEW content_performance AS
SELECT 
  c.post_id,
  c.title,
  c.category,
  c.publish_date,
  c.author,
  a.page_views,
  a.unique_visitors,
  a.avg_time_on_page,
  a.bounce_rate,
  l.leads_generated,
  l.conversions,
  -- Engagement score
  (a.page_views * 0.3 + a.unique_visitors * 0.4 + 
   (a.avg_time_on_page / 60) * 0.3) as engagement_score,
  -- ROI
  (l.conversions * 100) / NULLIF(a.page_views, 0) as conversion_rate
FROM cms.posts c
LEFT JOIN analytics.page_metrics a ON c.post_id = a.post_id
LEFT JOIN crm.content_leads l ON c.post_id = l.post_id;

Step 3: Create MCP Tools

Tool 1: Analyze Content Performance
  • analyze_content_performance(post_id: string, start_date: date, end_date: date)
Tool 2: Get Top Performing Content
  • get_top_performing_content(metric: string, limit: number, category: string)
Tool 3: Calculate Content ROI
  • calculate_content_roi(post_id: string, period: string)
Tool 4: Recommend Content Topics
  • recommend_content_topics(based_on: string, limit: number)

Example Agent Interactions

User: “What are our top performing blog posts?” Agent: “Top 5 Performing Posts:
  1. ‘10 Ways to Improve Sales’ - 45K views, 8% conversion rate, $12K revenue
  2. ‘Customer Success Guide’ - 32K views, 6.5% conversion, $8.5K revenue
  3. ‘Product Feature Deep Dive’ - 28K views, 5.2% conversion, $6K revenue”

Outcomes

  • Content ROI: 40% improvement
  • Engagement: 30% increase in average engagement
  • Conversion Rate: 25% improvement
  • Content Strategy: Data-driven topic selection

Next Steps